Неравномерное движение. Скорость при неравномерном движении

Равноускоренное криволинейное движение

Криволинейные движения - движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек.

Криволинейное движение - это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции vxи vy ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времени t определяется по формулам

Неравномерное движение. Скорость при неравномерном движении

Ни одно тело не движется все время с постоянной скоростью. Начиная движение, автомобиль движется быстрее и быстрее. Некоторое время он может двигаться равномерно, но потом он тормозит и останавливается. При этом автомобиль проходит разные расстояния за один и то же время.

Движение, при котором тело за равные промежутки времени проходит неодинаковые отрезки пути, называется неравномерным. При таком движении величина скорости не остается неизменной. В таком случае можно говорить лишь о средней скорости.

Средняя скорость показывает, чему равно перемещение, которое тело проходит за единицу времени. Она равна отношению перемещения тела до времени движения. Средняя скорость, как и скорость тела при равномерном движении, измеряется в метрах, разделенных на секунду. Для того, чтобы характеризовать движение точнее, в физике применяют мгновенную скорость.

Скорость тела в данный момент времени или в данной точке траектории называется мгновенной скоростью. Мгновенная скорость является векторной величиной и направлена так же, как вектор перемещения. Измерить мгновенную скорость можно с помощью спидометра. В Системе Интернациональной мгновенная скорость измеряется в метрах, разделенных на секунду.

точка движение скорость неравномерный

Движение тела по окружности

В природе и технике очень часто встречается криволинейное движение. Оно сложнее прямолинейного, так как существует множество криволинейных траекторий; это движение всегда ускоренное, даже когда модуль скорости не меняется.

Но движение по любой криволинейной траектории можно приблизительно представить как движение по дугам круга.

При движении тела по окружности направление вектора скорости меняется от точки к точке. Поэтому когда говорят о скорости такого движения, подразумевают мгновенную скорость. Вектор скорости направлен по касательной к окружности, а вектор перемещения - по хордам.

Равномерное движение по окружности - это движение, во время которого модуль скорости движения не изменяется, изменяется только ее направление. Ускорение такого движения всегда направлено к центру окружности и называется центростремительным. Для того чтобы найти ускорение тела, которое движется по кругу, необходимо квадрат скорости разделить на радиус окружности.

Помимо ускорения, движение тела по кругу характеризуют следующие величины:

Период вращения тела - это время, за которое тело совершает один полный оборот. Период вращения обозначается буквой Т и измеряется в секундах.

Частота вращения тела - это число оборотов в единицу времени. Частота вращения обозначается буквой? и измеряется в герцах. Для того чтобы найти частоту, надо единицу разделить на период.

Линейная скорость - отношение перемещения тела до времени. Для того чтобы найти линейную скорость тела по окружности, необходимо длину окружности разделить на период (длина окружности равна 2? умножить на радиус).

Угловая скорость - физическая величина, равная отношению угла поворота радиуса окружности, по которой движется тело, до времени движения. Угловая скорость обозначается буквой? и измеряется в радианах, разделенных на секунду. Найти угловую скорость можно, разделив 2? на период. Угловая скорость и линейная между собой. Для того чтобы найти линейную скорость, необходимо угловую скорость умножить на радиус окружности.


Рисунок 6. Движение по окружности, формулы.

Понятия скорости и ускорения естественным образом обобщаются на случай движения материальной точки по криволинейной траектории . Положение движущейся точки на траектории задается радиус-вектором r , проведенным в эту точку из какой-либо неподвижной точки О , например, начала координат (рис. 1.2). Пусть в момент времени t материальная точка находится в положении М с радиус-вектором r = r (t ). Спустя короткое время Dt , она переместится в положение М 1 с радиусом – вектором r 1 = r (t + Dt ). Радиус – вектор материальной точки получит приращение, определяемое геометрической разностью Dr = r 1 - r . Средней скоростью движения за время Dt называется величина

Направление средней скорости V ср совпадает с направлением вектора Dr .

Предел средней скорости при Dt ® 0, т. е. производная радиуса – вектора r по времени

(1.9)

называется истинной или мгновенной скоростью материальной точки. Вектор V направлен по касательной к траектории движущейся точки.

Ускорением а называется вектор, равный первой производной вектора скорости V или второй производной радиуса – вектора r по времени:

(1.10)

(1.11)

Отметим следующую формальную аналогию между скоростью и ускорением. Из произвольной неподвижной точки О 1 будем откладывать вектор скорости V движущейся точки во всевозможные моменты времени (рис. 1.3).

Конец вектора V называется скоростной точкой . Геометрическое место скоростных точек есть кривая, называемая годографом скорости. Когда материальная точка описывает траекторию, соответствующая ей скоростная точка движется по годографу.

Рис. 1.2 отличается от рис. 1.3 только обозначениями. Радиус – вектор r заменен на вектор скорости V , материальная точка – на скоростную точку, траектория – на годограф. Математические операции над вектором r при нахождении скорости и над вектором V при нахождении ускорения совершенно тождественны.

Скорость V направлена по касательной траектории. Поэтому ускорение a будет направлено по касательной к годографу скорости. Можно сказать, что ускорение есть скорость движения скоростной точки по годографу . Следовательно,

Рассматривая криволинейное движение тела, мы увидим, что его скорость в разные моменты различна. Даже в том случае, когда модуль скорости не меняется, все же имеет место изменение направления скорости. В общем случае меняются и модуль и направление скорости.

Таким образом, при криволинейном движении скорость непрерывно изменяется, так что это движение происходит с ускорением. Для определения этого ускорения (по модулю и направлению) требуется найти изменение скорости как вектора, т. е. найти приращение модуля скорости и изменение ее направления.

Рис. 49. Изменение скорости при криволинейном движении

Пусть, например, точка, двигаясь криволинейно (рис. 49), имела в некоторый момент скорость а через малый промежуток времени - скорость . Приращение скорости есть разность между векторами и . Так как эти векторы имеют различное направление, то нужно взять их векторную разность. Приращение скорости выразится вектором , изображаемым стороной параллелограмма с диагональю и другой стороной . Ускорением называется отношение приращения скорости к промежутку времени , за который это приращение произошло. Значит, ускорение

По направлению совпадает с вектором .

Выбирая достаточно малым, придем к понятию мгновенного ускорения (ср. § 16); при произвольном вектор будет представлять среднее ускорение за промежуток времени .

Направление ускорения при криволинейном движении не совпадает с направлением скорости, в то время как для прямолинейного движения эти направления совпадают (или противоположны). Чтобы найти направление ускорения при криволинейном движении, достаточно сопоставить направления скоростей в двух близких точках траектории. Так как скорости направлены по касательным к траектории, то по виду самой траектории можно сделать заключение, в какую сторону от траектории направлено ускорение. Действительно, так как разность скоростей в двух близких точках траектории всегда направлена в ту сторону, куда искривляется траектория, то, значит, и ускорение всегда направлено в сторону вогнутости траектории. Например, когда шарик катится по изогнутому желобу (рис. 50), его ускорение на участках и направлено так, как показывают стрелки, причем это не зависит от того, катится шарик от к или в обратном направлении.

Рис. 50. Ускорения при криволинейном движении всегда направлены в сторону вогнутости траектории

Рис. 51. К выводу формулы для центростремительного ускорения

Рассмотрим равномерное движение точки по криволинейной траектории. Мы уже знаем, что это - ускоренное движение. Найдем ускорение. Для этого достаточно рассмотреть ускорение для частного случая равномерного движения по окружности. Возьмем два близких положения и движущейся точки, разделенных малым промежутком времени (рис. 51, а). Скорости движущейся точки в и равны по модулю, но различны по направлению. Найдем разность этих скоростей, пользуясь правилом треугольника (рис. 51, б). Треугольники и подобны, как равнобедренные треугольники с равными углами при вершине. Длину стороны , изображающей приращение скорости за промежуток времени , можно положить равной , где - модуль искомого ускорения. Сходственная ей сторона есть хорда дуги ; вследствие малости дуги длина ее хорды может быть приближенно принята равной длине дуги, т.е. . Далее, ; , где - радиус траектории. Из подобия треугольников следует, что отношения сходственных сторон в них равны:

откуда находим модуль искомого ускорения:

Направление ускорения перпендикулярно к хорде . Для достаточно малых промежутков времени можно считать, что касательная к дуге практически совпадает с ее хордой. Значит, ускорение можно считать направленным перпендикулярно (нормально) к касательной к траектории, т. е. по радиусу к центру окружности. Поэтому такое ускорение называют нормальным или центростремительным ускорением.

Если траектория - не окружность, а произвольная кривая линия, то в формуле (27.1) следует взять радиус окружности, ближе всего подходящей к кривой в данной точке. Направление нормального ускорения и в этом случае будет перпендикулярно к касательной к траектории в данной точке. Если при криволинейном движении ускорение постоянно по модулю и направлению, его можно найти как отношение приращения скорости к промежутку времени, за который это приращение произошло, каков бы ни был этот промежуток времени. Значит, в этом случае ускорение можно найти по формуле

аналогичной формуле (17.1) для прямолинейного движения с постоянным ускорением. Здесь - скорость тела в начальный момент, a - скорость в момент времени .

Эта тема будет посвящена более сложному виду движения – КРИВОЛИНЕЙНОМУ . Как несложно догадаться, криволинейным называется движение, траектория которого представляет собой кривую линию . И, поскольку это движение сложнее прямолинейного, то для его описания уже не хватает тех физических величин, которые были перечислены в предыдущей главе.

Для математического описания криволинейного движения имеются 2 группы величин: линейные и угловые.

ЛИНЕЙНЫЕ ВЕЛИЧИНЫ.

1. Перемещение . В разделе 1.1 мы не стали уточнять различие между понятием

Рис.1.3 пути (расстояния) и понятием перемещения,

поскольку в прямолинейном движении эти

различия не играют принципиальной роли, да и

Обозначаются эти величины одной и той же бук-

вой S . Но, имея дело с криволинейным движением,

этот вопрос нужно прояснить. Итак, что такое путь

(или расстояние)? – Это длина траектории

движения. То есть, если Вы отследите траекторию

движения тела и измерите ее (в метрах, километрах и т.д.), вы получите величину, которая называется путем (или расстоянием) S (см. рис.1.3). Таким образом, путь – это скалярная величина, которая характеризуется только числом.

Рис.1.4 А перемещение - это кратчайшее расстояние между

точкой начала пути и точкой конца пути. И, поскольку

перемещение имеет строгую направленность из начала

Пути в его конец, то оно является величиной векторной

и характеризуется не только численным значением, но и

направлением (рис.1.3). Нетрудно догадаться, что, если

тело совершает движение по замкнутой траектории, то к

моменту его возвращения в начальное положение перемещение будет равно нулю (см. рис.1.4).

2 . Линейная скорость . В разделе 1.1 мы давали определение этой величины, и оно остается в силе, хотя тогда мы не уточняли, что эта скорость линейная. Как же направлен вектор линейной скорости? Обратимся к рис.1.5. Здесь изображен фрагмент

криволинейной траектории тела. Любая кривая линия представляет собой соединение между собой дуг разных окружностей. На рис.1.5 изображены только две из них: окружность (О 1 , r 1) и окружность (О 2 , r 2). На момент прохождения тела по дуге данной окружности ее центр становится временным центром поворота с радиусом, равным радиусу этой окружности.

Вектор, проведенный из центра поворота в точку, где в данный момент находится тело, называется радиусом-вектором. На рис.1.5 радиусы-векторы представлены векторами и . Также на этом рисунке изображены и вектора линейной скорости: вектор линейной скорости всегда направлен по касательной к траектории в сторону движения. Следовательно, угол между вектором и радиусом-вектором, проведенным в данную точку траектории, всегда равен 90°. Если тело движется с постоянной линейной скоростью, то модуль вектора изменяться не будет, тогда как его направление все время меняется в зависимости от формы траектории. В случае, изображенном на рис.1.5, движение осуществляется с переменной линейной скоростью, поэтому у вектора изменяется модуль. Но, поскольку при криволинейном движении направление вектора изменяется всегда, то отсюда следует очень важный вывод:

при криволинейном движении всегда есть ускорение ! (Даже если движение осуществляется с постоянной линейной скоростью.) Причем, ускорение, о котором идет речь в данном случае, в дальнейшем мы будем называть линейным ускорением.

3 . Линейное ускорение . Напомню, что ускорение возникает тогда, когда изменяется скорость. Соответственно, линейное ускорение появляется в случае изменения линейной скорости. А линейная скорость при криволинейном движении может изменяться кок по модулю, так и по направлению. Таким образом, полное линейное ускорение раскладывается на две составляющие, одна из которых влияет на направление вектора , а вторая на его модуль. Рассмотрим эти ускорения (рис. 1.6). На этом рисунке

рис. 1.6

О

изображено тело, движущееся по круговой траектории с центром поворота в точке О.

Ускорение, которое изменяет направление вектора , называется нормальным и обозначается . Нормальным оно называется потому, что направлено перпендикулярно (нормально) к касательной, т.е. вдоль радиуса к центру поворота . Его еще называют центростремительным ускорением.

Ускорение, которое изменяет модуль вектора , называется тангенциальным и обозначается . Оно лежит на касательной и может быть направлено как в сторону направления вектора , так и противоположно ему :

Если линейная скорость увеличивается, то > 0 и их вектора сонаправлены;

Если линейная скорость уменьшается, то < 0 и их вектора противоположно

направлены.

Таким образом, эти два ускорения всегда образуют между собой прямой угол (90º) и являются составляющими полного линейного ускорения , т.е. полное линейное ускорение есть векторная сумма нормального и тангенциального ускорения:

Замечу, что в данном случае речь идет именно о векторной сумме, но ни в коем случае не о скалярной. Чтобы найти численное значение , зная и , необходимо воспользоваться теоремой Пифагора (квадрат гипотенузы треугольника численно равен сумме квадратов катетов этого треугольника):

(1.8).

Отсюда следует:

(1.9).

По каким формулам рассчитывать и рассмотрим чуть позже.

УГЛОВЫЕ ВЕЛИЧИНЫ.

1 . Угол поворота φ . При криволинейном движении тело не только проходит какой-то путь и совершает какое-то перемещение, но и поворачивается на определенный угол (см. рис. 1.7(а)). Поэтому для описания такого движения вводится величина, которая называется углом поворота, обозначается греческой буквой φ (читается «фи»). В системе СИ угол поворота измеряется в радианах (обозначается «рад»). Напомню, что один полный оборот равен 2π радианам, а число π есть константа: π ≈ 3,14. на рис. 1.7(а) изображена траектория движения тела по окружности радиуса r с цетром в точке О. Сам угол поворота – это угол между радиус-векторами тела в некоторые моменты времени.

2 . Угловая скорость ω это величина, показывающая, как изменяется угол поворота за единицу времени. (ω – греческая буква, читается «омега».) На рис. 1.7(б) изображено положение материальной точки, движущейся по круговой траектории с центром в точке О, через промежутки времени Δt . Если углы, на которые поворачивается тело в течение этих промежутков, одинаковы, то угловая скорость постоянна, и это движение можно считать равномерным. А если углы поворота разные – то движение неравномерное. И, поскольку угловая скорость показывает, на сколько радиан

повернулось тело за одну секунду, то ее единица измерения – радиан в секунду

(обозначается «рад/с »).

рис. 1.7

а). б). Δt

Δt

Δt

О φ О Δt

3 . Угловое ускорение ε – это величина, показывающая, как изменяется за единицу времени. И, поскольку угловое ускорение ε появляется тогда, когда изменяется, угловая скорость ω , то можно сделать вывод, что угловое ускорение имеет место только в случае неравномерного криволинейного движения. Единица измерения углового ускорения – «рад/с 2 » (радиан за секунду в квадрате).

Таким образом, таблицу 1.1 можно дополнить еще тремя величинами:

Табл.1.2

физическая величина определение величины обозначение величины единица измерения
1. путь это расстояние, которое преодолевает тело в процессе своего движения S м (метр)
2. скорость это расстояние, которое проходит тело за единицу времени (например, за 1 секунду) υ м/с (метр в секунду)
3. ускорение это величина, на которую изменяется скорость тела за единицу времени a м/с 2 (метр за секунду в квадрате)
4. время t с (секунда)
5. угол поворота это угол, на который поворачивается тело в процессе криволинейного движения φ рад (радиан)
6. угловая скорость это угол, на который поворачивается тело за единицу времени (например, за 1 сек.) ω рад/с (радиан в секунду)
7. угловое ускорение это величина, на которую изменяется угловая скорость за единицу времени ε рад/с 2 (радиан за секунду в квадрате)

Теперь можно перейти непосредственно к рассмотрению всех видов криволинейного движения, а их всего лишь три.



Понравилась статья? Поделитесь ей
Наверх