Дифф уравнения онлайн. Дифференциальные уравнения

Дифференциальные уравнения первого порядка. Примеры решений.
Дифференциальные уравнения с разделяющимися переменными

Дифференциальные уравнения (ДУ). Эти два слова обычно приводят в ужас среднестатистического обывателя. Дифференциальные уравнения кажутся чем-то запредельным и трудным в освоении и многим студентам. Уууууу… дифференциальные уравнения, как бы мне всё это пережить?!

Такое мнение и такой настрой в корне неверен, потому что на самом деле ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ – ЭТО ПРОСТО И ДАЖЕ УВЛЕКАТЕЛЬНО . Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Чем качественнее изучены темы Производная функции одной переменной и Неопределенный интеграл , тем будет легче разобраться в дифференциальных уравнениях. Скажу больше, если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Придётся много интегрировать. И дифференцировать. Также настоятельно рекомендую научиться находить .

В 95% случаев в контрольных работах встречаются 3 типа дифференциальных уравнений первого порядка: уравнения с разделяющимися переменными , которые мы рассмотрим на этом уроке; однородные уравнения и линейные неоднородные уравнения . Начинающим изучать диффуры советую ознакомиться с уроками именно в такой последовательности, причём после изучения первых двух статей не помешает закрепить свои навыки на дополнительном практикуме – уравнения, сводящихся к однородным .

Есть еще более редкие типы дифференциальных уравнений: уравнения в полных дифференциалах , уравнения Бернулли и некоторые другие. Наиболее важными из двух последних видов являются уравнения в полных дифференциалах, поскольку помимо данного ДУ я рассматриваю новый материалчастное интегрирование .

Если у вас в запасе всего день-два , то для сверхбыстрой подготовки есть блиц-курс в pdf-формате.

Итак, ориентиры расставлены – поехали:

Сначала вспомним обычные алгебраические уравнения . Они содержат переменные и числа. Простейший пример: . Что значит решить обычное уравнение? Это значит, найти множество чисел , которые удовлетворяют данному уравнению. Легко заметить, что детское уравнение имеет единственный корень: . Для прикола сделаем проверку, подставим найденный корень в наше уравнение:

– получено верное равенство, значит, решение найдено правильно.

Диффуры устроены примерно так же!

Дифференциальное уравнение первого порядка в общем случае содержит :
1) независимую переменную ;
2) зависимую переменную (функцию);
3) первую производную функции: .

В некоторых уравнениях 1-го порядка может отсутствовать «икс» или (и) «игрек», но это не существенно – важно чтобы в ДУ была первая производная , и не было производных высших порядков – , и т.д.

Что значит ? Решить дифференциальное уравнение – это значит, найти множество всех функций , которые удовлетворяют данному уравнению. Такое множество функций часто имеет вид (– произвольная постоянная), который называется общим решением дифференциального уравнения .

Пример 1

Решить дифференциальное уравнение

Полный боекомплект. С чего начать решение ?

В первую очередь нужно переписать производную немного в другом виде. Вспоминаем громоздкое обозначение , которое многим из вас наверняка казалось нелепым и ненужным. В диффурах рулит именно оно!

На втором шагесмотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говоря, в левой части нам нужно оставить только «игреки» , а в правой части организовать только «иксы» . Разделение переменных выполняется с помощью «школьных» манипуляций: вынесение за скобки, перенос слагаемых из части в часть со сменой знака, перенос множителей из части в часть по правилу пропорции и т.п.

Дифференциалы и – это полноправные множители и активные участники боевых действий. В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции:

Переменные разделены. В левой части – только «игреки», в правой части – только «иксы».

Следующий этап – интегрирование дифференциального уравнения . Всё просто, навешиваем интегралы на обе части:

Разумеется, интегралы нужно взять. В данном случае они табличные:

Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу достаточно записать один раз (т.к. константа + константа всё равно равна другой константе) . В большинстве случаев её помещают в правую часть.

Строго говоря, после того, как взяты интегралы, дифференциальное уравнение считается решённым. Единственное, у нас «игрек» не выражен через «икс», то есть решение представлено в неявном виде. Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения . То есть, – это общий интеграл.

Ответ в такой форме вполне приемлем, но нет ли варианта получше? Давайте попытаемся получить общее решение .

Пожалуйста, запомните первый технический приём , он очень распространен и часто применяется в практических заданиях: если в правой части после интегрирования появляется логарифм, то константу во многих случаях (но далеко не всегда!) тоже целесообразно записать под логарифмом .

То есть, ВМЕСТО записи обычно пишут .

Зачем это нужно? А для того, чтобы легче было выразить «игрек». Используем свойство логарифмов . В данном случае:

Теперь логарифмы и модули можно убрать:

Функция представлена в явном виде. Это и есть общее решение.

Ответ : общее решение: .

Ответы многих дифференциальных уравнений довольно легко проверить. В нашем случае это делается совсем просто, берём найденное решение и дифференцируем его:

После чего подставляем и производную в исходное уравнение :

– получено верное равенство, значит, общее решение удовлетворяет уравнению , что и требовалось проверить.

Придавая константе различные значения, можно получить бесконечно много частных решений дифференциального уравнения. Ясно, что любая из функций , , и т.д. удовлетворяет дифференциальному уравнению .

Иногда общее решение называют семейством функций . В данном примере общее решение – это семейство линейных функций, а точнее, семейство прямых пропорциональностей.

После обстоятельного разжевывания первого примера уместно ответить на несколько наивных вопросов о дифференциальных уравнениях:

1) В этом примере нам удалось разделить переменные. Всегда ли это можно сделать? Нет, не всегда. И даже чаще переменные разделить нельзя. Например, в однородных уравнениях первого порядка , необходимо сначала провести замену. В других типах уравнений, например, в линейном неоднородном уравнении первого порядка , нужно использовать различные приёмы и методы для нахождения общего решения. Уравнения с разделяющимися переменными, которые мы рассматриваем на первом уроке – простейший тип дифференциальных уравнений.

2) Всегда ли можно проинтегрировать дифференциальное уравнение? Нет, не всегда. Очень легко придумать «навороченное» уравнение, которое не проинтегрировать, кроме того, существуют неберущиеся интегралы. Но подобные ДУ можно решить приближенно с помощью специальных методов. Даламбер и Коши гарантируют... …тьфу, lurkmore.to давеча начитался, чуть не добавил «с того света».

3) В данном примере мы получили решение в виде общего интеграла . Всегда ли можно из общего интеграла найти общее решение, то есть, выразить «игрек» в явном виде? Нет не всегда. Например: . Ну и как тут выразить «игрек»?! В таких случаях ответ следует записать в виде общего интеграла. Кроме того, иногда общее решение найти можно, но оно записывается настолько громоздко и коряво, что уж лучше оставить ответ в виде общего интеграла

4) ...пожалуй, пока достаточно. В первом же примере нам встретился ещё один важный момент , но дабы не накрыть «чайников» лавиной новой информации, оставлю его до следующего урока.

Торопиться не будем. Еще одно простое ДУ и еще один типовой приём решения:

Пример 2

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию

Решение : по условию требуется найти частное решение ДУ, удовлетворяющее заданному начальному условию. Такая постановка вопроса также называется задачей Коши .

Сначала находим общее решение. В уравнении нет переменной «икс», но это не должно смущать, главное, в нём есть первая производная.

Переписываем производную в нужном виде:

Очевидно, что переменные можно разделить, мальчики – налево, девочки – направо:

Интегрируем уравнение:

Общий интеграл получен. Здесь константу я нарисовал с надстрочной звездочкой, дело в том, что очень скоро она превратится в другую константу.

Теперь пробуем общий интеграл преобразовать в общее решение (выразить «игрек» в явном виде). Вспоминаем старое, доброе, школьное: . В данном случае:

Константа в показателе смотрится как-то некошерно, поэтому её обычно спускают с небес на землю. Если подробно, то происходит это так. Используя свойство степеней, перепишем функцию следующим образом:

Если – это константа, то – тоже некоторая константа, переообозначим её буквой :

Запомните «снос» константы – это второй технический приём , который часто используют в ходе решения дифференциальных уравнений.

Итак, общее решение: . Такое вот симпатичное семейство экспоненциальных функций.

На завершающем этапе нужно найти частное решение, удовлетворяющее заданному начальному условию . Это тоже просто.

В чём состоит задача? Необходимо подобрать такое значение константы , чтобы выполнялось условие .

Оформить можно по-разному, но понятнее всего, пожалуй, будет так. В общее решение вместо «икса» подставляем ноль, а вместо «игрека» двойку:



То есть,

Стандартная версия оформления:

Теперь в общее решение подставляем найденное значение константы :
– это и есть нужное нам частное решение.

Ответ : частное решение:

Выполним проверку. Проверка частного решение включает в себя два этапа:

Сначала необходимо проверить, а действительно ли найденное частное решение удовлетворяет начальному условию ? Вместо «икса» подставляем ноль и смотрим, что получится:
– да, действительно получена двойка, значит, начальное условие выполняется.

Второй этап уже знаком. Берём полученное частное решение и находим производную:

Подставляем и в исходное уравнение :


– получено верное равенство.

Вывод: частное решение найдено правильно.

Переходим к более содержательным примерам.

Пример 3

Решить дифференциальное уравнение

Решение: Переписываем производную в нужном нам виде:

Оцениваем, можно ли разделить переменные? Можно. Переносим второе слагаемое в правую часть со сменой знака:

И перекидываем множители по правилу пропорции:

Переменные разделены, интегрируем обе части:

Должен предупредить, приближается судный день. Если вы плохо изучили неопределенные интегралы , прорешали мало примеров, то деваться некуда – придется их осваивать сейчас.

Интеграл левой части легко найти , с интегралом от котангенса расправляемся стандартным приемом, который мы рассматривали на уроке Интегрирование тригонометрических функций в прошлом году:


В правой части у нас получился логарифм, и, согласно моей первой технической рекомендации, константу тоже следует записать под логарифмом.

Теперь пробуем упростить общий интеграл. Поскольку у нас одни логарифмы, то от них вполне можно (и нужно) избавиться. С помощью известных свойств максимально «упаковываем» логарифмы. Распишу очень подробно:

Упаковка завершена, чтобы быть варварски ободранной:

Можно ли выразить «игрек»? Можно. Надо возвести в квадрат обе части.

Но делать этого не нужно.

Третий технический совет: если для получения общего решения нужно возводить в степень или извлекать корни, то в большинстве случаев следует воздержаться от этих действий и оставить ответ в виде общего интеграла. Дело в том, что общее решение будет смотреться просто ужасно – с большими корнями, знаками и прочим трэшем.

Поэтому ответ запишем в виде общего интеграла. Хорошим тоном считается представить его в виде , то есть, в правой части, по возможности, оставить только константу. Делать это не обязательно, но всегда же выгодно порадовать профессора;-)

Ответ: общий интеграл:

! Примечание: общий интеграл любого уравнения можно записать не единственным способом. Таким образом, если ваш результат не совпал с заранее известным ответом, то это еще не значит, что вы неправильно решили уравнение.

Общий интеграл тоже проверяется довольно легко, главное, уметь находить производную от функции, заданной неявно . Дифференцируем ответ:

Умножаем оба слагаемых на :

И делим на :

Получено в точности исходное дифференциальное уравнение , значит, общий интеграл найден правильно.

Пример 4

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Это пример для самостоятельного решения.

Напоминаю, что алгоритм состоит из двух этапов:
1) нахождение общего решения;
2) нахождение требуемого частного решения.

Проверка тоже проводится в два шага (см. образец в Примере №2), нужно:
1) убедиться, что найденное частное решение удовлетворяет начальному условию;
2) проверить, что частное решение вообще удовлетворяет дифференциальному уравнению.

Полное решение и ответ в конце урока.

Пример 5

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Решение: Сначала найдем общее решение.Данное уравнение уже содержит готовые дифференциалы и , а значит, решение упрощается. Разделяем переменные:

Интегрируем уравнение:

Интеграл слева – табличный, интеграл справа – берем методом подведения функции под знак дифференциала :

Общий интеграл получен, нельзя ли удачно выразить общее решение? Можно. Навешиваем логарифмы на обе части. Поскольку они положительны, то знаки модуля излишни:

(Надеюсь, всем понятно преобразование , такие вещи надо бы уже знать)

Итак, общее решение:

Найдем частное решение, соответствующее заданному начальному условию .
В общее решение вместо «икса» подставляем ноль, а вместо «игрека» логарифм двух:

Более привычное оформление:

Подставляем найденное значение константы в общее решение.

Ответ: частное решение:

Проверка: Сначала проверим, выполнено ли начальное условие :
– всё гуд.

Теперь проверим, а удовлетворяет ли вообще найденное частное решение дифференциальному уравнению. Находим производную:

Смотрим на исходное уравнение: – оно представлено в дифференциалах. Есть два способа проверки. Можно из найденной производной выразить дифференциал :

Подставим найденное частное решение и полученный дифференциал в исходное уравнение :

Используем основное логарифмическое тождество :

Получено верное равенство, значит, частное решение найдено правильно.

Второй способ проверки зеркален и более привычен: из уравнения выразим производную, для этого разделим все штуки на :

И в преобразованное ДУ подставим полученное частное решение и найденную производную . В результате упрощений тоже должно получиться верное равенство.

Пример 6

Решить дифференциальное уравнение . Ответ представить в виде общего интеграла .

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Какие трудности подстерегают при решении дифференциальных уравнений с разделяющимися переменными?

1) Не всегда очевидно (особенно, «чайнику»), что переменные можно разделить. Рассмотрим условный пример: . Здесь нужно провести вынесение множителей за скобки: и отделить корни: . Как действовать дальше – понятно.

2) Сложности при самом интегрировании. Интегралы нередко возникают не самые простые, и если есть изъяны в навыках нахождения неопределенного интеграла , то со многими диффурами придется туго. К тому же у составителей сборников и методичек популярна логика «раз уж дифференциальное уравнение является простым, то пусть хоть интегралы будут посложнее».

3) Преобразования с константой. Как все заметили, с константой в дифференциальных уравнениях можно обращаться достаточно вольно, и некоторые преобразования не всегда понятны новичку. Рассмотрим ещё один условный пример: . В нём целесообразно умножить все слагаемые на 2: . Полученная константа – это тоже какая-то константа, которую можно обозначить через : . Да, и коль скоро в правой части логарифм, то константу целесообразно переписать в виде другой константы: .

Беда же состоит в том, что с индексами частенько не заморачиваются и используют одну и ту же букву . В результате запись решения принимает следующий вид:

Что за ересь? Тут же ошибки! Строго говоря – да. Однако с содержательной точки зрения – ошибок нет, ведь в результате преобразования варьируемой константы всё равно получается варьируемая константа.

Или другой пример, предположим, что в ходе решения уравнения получен общий интеграл . Такой ответ выглядит некрасиво, поэтому у каждого слагаемого целесообразно сменить знак: . Формально здесь опять ошибка – справа следовало бы записать . Но неформально подразумевается, что «минус цэ» – это всё равно константа (которая с тем же успехом принимает любые значения!) , поэтому ставить «минус» не имеет смысла и можно использовать ту же букву .

Я буду стараться избегать небрежного подхода, и всё-таки проставлять у констант разные индексы при их преобразовании.

Пример 7

Решить дифференциальное уравнение . Выполнить проверку.

Решение: Данное уравнение допускает разделение переменных. Разделяем переменные:

Интегрируем:

Константу тут не обязательно определять под логарифм, поскольку ничего путного из этого не получится.

Ответ: общий интеграл:

Проверка: Дифференцируем ответ (неявную функцию):

Избавляемся от дробей, для этого умножаем оба слагаемых на :

Получено исходное дифференциальное уравнение, значит, общий интеграл найден правильно.

Пример 8

Найти частное решение ДУ.
,

Это пример для самостоятельного решения. Единственная подсказка – здесь получится общий интеграл, и, правильнее говоря, нужно исхитриться найти не частное решение, а частный интеграл . Полное решение и ответ в конце урока.

Конспект лекций по

дифференциальным уравнениям

Дифференциальные уравнения

Введение

При изучении некоторых явлений часто возникает ситуация, когда процесс не удаётся описать с помощью уравнения y=f(x) или F(x;y)=0. Помимо переменной х и неизвестной функции, в уравнение входит производная этой функции.

Определение: Уравнение, связывающее переменную х, неизвестную функцию y(x) и её производные называется дифференциальным уравнением . В общем виде дифференциальное уравнение выглядит так:

F(x;y(x);;;...;y (n))=0

Определение: Порядком дифференциального уравнения называется порядок входящей в него старшей производной.

–дифференциальное уравнение 1 порядка

–дифференциальное уравнение 3 порядка

Определение: Решением дифференциального уравнения является функция, которая при подстановке в уравнение обращает его в тождество.

Дифференциальные уравнения 1 порядка

Определение: Уравнение вида =f(x;y) или F(x;y;)=0называется дифференциальным уравнением 1 порядка.

Определение: Общим решением дифференциального уравнения 1 порядка называется функция y=γ(x;c), где (с –const), которая при подстановке в уравнение обращает его в тождество. Геометрически на плоскости общим решением соответствует семейство интегральных кривых, зависящих от параметра с.

Определение: Интегральная кривая, проходящая через точку плоскости с координатами (х 0 ;y 0) соответствует частному решению дифференциального уравнения, удовлетворяющего начальному условию:

Теорема о существовании единственности решения дифференциального уравнения 1 порядка

Дано дифференциальное уравнение 1 порядка
и функцияf(x;y) непрерывна вместе с частными производными в некоторой области D плоскости XOY, тогда через точку М 0 (х 0 ;y 0)D проходит единственная кривая соответствующая частному решению дифференциального уравнения соответствующему начальному условию y(x 0)=y 0

Через точку плоскости с данными координатами проходит 1 интегральная кривая.

Если не удаётся получить общее решение дифференциального уравнения 1 порядка в явном виде, т.е
, то его можно получить в неявном виде:

F(x; y; c) =0 – неявный вид

Общее решение в таком виде называется общим интегралом дифференциального уравнения.

По отношению к дифференциальному уравнению 1 порядка ставится 2 задачи:

1)Найти общее решение (общий интеграл)

2)Найти частное решение (частный интеграл) удовлетворяющее заданному начальному условию. Эту задачу называют задачей Коши для дифференциального уравнения.

Дифференциальные уравнения с разделяющимися переменными

Уравнения вида:
называется дифференциальным уравнением с разделяющимися переменными.

Подставим

умножим на dx

разделим переменные

разделим на

Замечание: обязательно нужно рассматривать частный случай, когда

переменные разделены

проинтегрируем обе части уравнения

- общее решение

Дифференциальное уравнение с разделяющимися переменными можно записать в виде:

Отдельный случай
!

Проинтегрируем обе части уравнения:

1)

2)
нач. условия:

Однородные дифференциальные уравнения 1 порядка

Определение: Функция
называется однородной порядкаn, если

Пример: - однородная функция порядкаn=2

Определение: Однородная функция порядка 0 называется однородной .

Определение: Дифференциальное уравнение
называется однородным, если
- однородная функция, т.е

Таким образом однородное дифференциальное уравнение может быть записано в виде:

С помощью замены , гдеt – функция переменной х, однородное дифференциальное уравнение сводится к уравнению с разделяющимися переменными.

- подставим в уравнение

Переменные разделены, проинтегрируем обе части уравнения

Сделаем обратную замену, подставив вместо , получим общее решение в неявном виде.

Однородное дифференциальное уравнение может быть записано в дифференциальной форме.

M(x;y)dx+N(x;y)dy=0, где M(x;y) и N(x;y) – однородные функции одинакового порядка.

Разделим на dx и выразим

1)

Приложение

Решение дифференциальных уравнений онлайн на сайт для закреплеения студентами пройденного материала. И тренировки своих практических навыков. Дифференциальные уравнения онлайн. Дифуры онлайн, решение математики в режиме онлайн. Пошаговое решение математических задач онлайн. Порядок, или степень дифференциального уравнения - наивысший порядок производных, входящих в него. Дифференциальные уравнения онлайн. Процесс решения дифференциального уравнения называется интегрированием. Задача об интегрировании дифференциального уравнения считается решённой, если нахождение неизвестной функции удается привести к квадратуре, независимо от того, выражается ли полученный интеграл в конечном виде через известные функции или нет. Пошаговое решение дифференциальных уравнений онлайн. Все дифференциальные уравнения можно разделить на обыкновенные (ОДУ), в которые входят только функции (и их производные) от одного аргумента, и уравнения с частными производными (УРЧП), в которых входящие функции зависят от многих переменных. Дифференциальные уравнения онлайн. Существуют также стохастические дифференциальные уравнения (СДУ), включающие случайные процессы. Пошаговое решение дифференциальных уравнений онлайн. В зависимости от комбинаций производных, функций, независимых переменных дифференциальные уравнения подразделяются на линейные и нелинейные, с постоянными или переменными коэффициентами, однородные или неоднородные. В связи с важностью приложений в отдельный класс выделены квазилинейные (линейные относительно старших производных) дифференциальные уравнения в частных производных. Решения дифференциальных уравнений подразделяются на общие и частные решения. Дифференциальные уравнения онлайн. Общие решения включают в себя неопределенные постоянные, а для уравнений в частных производных - произвольные функции от независимых переменных, которые могут быть уточнены из дополнительных условий интегрирования (начальных условий для обыкновенных дифференциальных уравнений, начальных и граничных условий для уравнений в частных производных). Пошаговое решение дифференциальных уравнений онлайн. После определения вида указанных постоянных и неопределенных функций решения становятся частными. Поиск решений обыкновенных дифференциальных уравнений привёл к установлению класса специальных функций - часто встречающихся в приложениях функций, не выражающихся через известные элементарные функции. Дифференциальные уравнения онлайн. Их свойства были подробно изучены, составлены таблицы значений, определены взаимные связи и т.д.. Множество перечисляемых чисел исследовать можно. Лучший ответ на поставленную задачу. Как найти в первом приближении исходящий вектор к области сходимости про Дифференциальные уравнения без выяснения найденного верхнего предела. Выбор очевиден для возрастания математических функций. Есть прогрессивный метод над уровнем исследования. Выровнять по начальному условию задачи решение дифференциальных поможет найти однозначное выбранное значение. Может быть так, что сможет неизвестную определить сразу. Как в предыдущем примере на указание решения для математической задачи, линейные дифференциальные уравнения есть ответ на поставленную конкретно задачу в указанные сроки. Локально не определено поддержание процедуры исследования. Будет так, что пример найдется для каждого студента и решение дифференциальных уравнений определит назначенный на ответственного исполнителя как минимум из двух значений. Взять на некотором отрезке функцию общего значения и предупредить по которой оси будет разрыв. Изучив дифференциальные уравнения онлайн, возможно однозначно показать на сколько важен результат, если таковой предусмотрен из начальных условий. Вырезать область из определения функции - это невозможно, так как локально нет определения по задаче. Будучи найденным из системы уравнений, ответ содержит в себе переменную, исчисляемую в общем смысле, но решить дифференциальное уравнение онлайн естественно получится без этого действия по определению сказанного условия. Рядом с промежутком отрезка видно как решение дифференциальных уравнений онлайн способно продвинуть результат исследований в положительную сторону на момент среза знаний у студентов. Лучшее не всегда получается путем общего принятого подхода к делу. На уровне двукратного увеличения можно с пользой просмотреть все необходимые линейные дифференциальные уравнения в естественном представлении, но возможность подсчитать числовое значение приведет к улучшению знаний. По любой методике в математике есть дифференциальные уравнения, которые представлены в различных по своей сути выражениях, такие как однородные или сложные. Проведя общий анализ исследования функции, станет ясно, что решение дифференциальных как множество возможностей представляет собой явную погрешность в значениях. Истинна в ней заключается в пространстве над линий абсцисс. Где-то в области определения сложной функции в некоторой точке её определения линейные дифференциальные уравнения смогут представить ответ в аналитическом виде. то есть в общем виде как суть. Не поменяется ничего при замене переменной. Однако нужно с особым интересом вглядываться в ответ. Меняет по сути калькулятор отношение в итоге, то есть как решение дифференциальных уравнений пропорционально глобальному значению обозначается в пределах искомого решения. В ряде случаев предупреждение о массовой ошибке неизбежно. Дифференциальные уравнения онлайн реализуют общее представление о задаче, но в итоге нужно как можно скорее предусмотреть положительные стороны векторного произведения. В математике не редки случаи заблуждения в теории чисел. Однозначно нужна будет проверка. Естественно лучше предоставить это право профессионалам в своем деле и решить дифференциальное уравнение онлайн помогут именно они, так как их опыт колоссальный и положительный. Разница на поверхностях фигур и площадь такова, что не решение дифференциальных уравнений онлайн позволит видеть, а множество не пересекаемых объектов таково, что линия параллельна оси. В итоге можно получить в два раза больше значений. Будучи не в явном виде, наше представление о правильности формально записи предусматривает линейные дифференциальные уравнения как в области просмотра, так и в отношении преднамеренного завышения качества результата. Несколько раз выходит в обзор решаемое на коллегии обсуждение на тему, интересную всем студентам. На протяжении всего изучения полного курса лекций, мы заострим наше пристальное внимание на дифференциальные уравнения и связные с ними области изучения науки, если тем самым не противоречить истине. Многих этапов можно избежать в начале пути. Если решение дифференциальных по-прежнему является принципиально чем-то новым для студентов, то старое вовсе не забывается, а прогрессирует в будущее с высокой скоростью развития. Изначально условия по задаче в математике расходятся, но это обозначено в абзаце справа. По истечению времени заданного по определению не исключены возможности пропорционального зависимого исхода на различных плоскостях движения вектора. Исправляется такой простой случай также как описываются линейные дифференциальные уравнения на калькуляторе в общем виде, так будет быстрее и взаимозачет расчетов не приведет к ошибочному мнению. Лишь пять названных по теории случаев могут раздвигать грани происходящего. Вручную рассчитать значение в цифрах поможет наше решение дифференциальных уравнений уже на первых этапах разложения функционального пространства. В нужных местах необходимо точку соприкосновения четырех линий представить в общем значении. Но если придется задачу вытеснить, то приравнять сложность будет просто. Исходных данных достаточно для оформления прилежащего катета и дифференциальные уравнения онлайн выглядят выровненными по левому краю и поверхность односторонняя направлена к ротору вектора. Выше верхнего предела возможны числовые значения сверх обозначенного условия. Принимать во внимание математическую формулу и решить дифференциальное уравнение онлайн за счет трех неизвестных в общем значении пропорции возможно. Локальный метод расчета признан действительным. Система координат прямоугольная в относительном движении плоскости. Общее решение дифференциальных уравнений онлайн позволяет однозначно сделать вывод в пользу расчетной прогонки сквозь матричные определения на всей прямой, расположенной выше графика заданной в явном виде функции. Решение насквозь проглядывается, если приложить вектор движения к точке соприкосновения трех полушарий. Цилиндр получается путем вращения прямоугольника вокруг стороны и линейные дифференциальные уравнения смогут показать направление движения точки по заданным выражениям её закона движения. Исходные данные верные и задача в математике взаимозаменяема при одном несложном условии. Однако в силу обстоятельств, в виду сложности постановочной подзадачи, дифференциальные уравнения упрощают процесс калькулировано числовых пространств на уровне трехмерного пространства. Легко доказать обратное, но этого возможно избежать, как в приведенном примере. В высшей математике предусмотрены следующие моменты: когда задача приводится к упрощенному виду, на неё следует распространить как можно большее усилие со стороны студентов. Взачет попадают наложенные друг на друга линии. Про решение дифференциальных по-прежнему возобновляет преимущество сказанного метода на кривой линии. Если распознать вначале не то, что нужно, то математическая формула составит новое значение выражения. Цель - оптимальный подход к решению поставленных профессором задания. Не стоит полагать, что линейные дифференциальные уравнения в упрощенном виде превзойдут ожидаемый результат. На конечно составленной поверхности разместим три вектора. ортогональные друг другу. Вычислим произведение. Проведем сложение большего числа символов и распишем из полученного выражения все переменные функции. Есть пропорция. Несколько действий, предшествующих окончанию вычисления, однозначного ответа на решение дифференциальных уравнений дадут не сразу, а только по истечению отведенного времени по оси ординат. Слева от точки разрыва, заданной в неявном виде от функции, проведем ось, ортогональную лучшему возрастающему вектору и дифференциальные уравнения онлайн расположим вдоль наименьшего граничного значения нижней грани математического объекта. Лишний аргумент присоединим в области разрыва функции. Правее от точек расположения кривой линии решить дифференциальное уравнение онлайн помогут написанные нами формулы приведения к общему знаменателю. Единственно верным подходом примем тот, что прольет свет на нерешенные задачи из теории в практику, в общем случае однозначно. Линии по направлению координат заданных точек ни разу не сомкнули крайнее положение квадрата, однако решение дифференциальных уравнений онлайн поможет в изучении математики и студентам, и нам, и просто начинающим людям в этой области. Речь идет о возможности подстановки аргумента значения во все значимые под линии одного поля. В принципе, как и следовало ожидать, наши линейные дифференциальные уравнения есть нечто обособленное в единое понятие приведенного смысла. В помощь студентам один из лучших среди аналогичных сервисов калькулятор. Пройдите все курсы и выберите оптимальный правильный для себя.

=

Решение различных геометрических, физических и инженерных задач часто приводят к уравнениям, которые связывают независимые переменные, характеризующие ту ил иную задачу, с какой – либо функцией этих переменных и производными этой функции различных порядков.

В качестве примера можно рассмотреть простейший случай равноускоренного движения материальной точки.

Известно, что перемещение материальной точки при равноускоренном движении является функцией времени и выражается по формуле:

В свою очередь ускорение a является производной по времени t от скорости V , которая также является производной по времени t от перемещения S . Т.е.

Тогда получаем:
- уравнение связывает функцию f(t) с независимой переменной t и производной второго порядка функции f(t).

Определение. Дифференциальным уравнением называется уравнение, связывающее независимые переменные, их функции и производные (или дифференциалы) этой функции.

Определение. Если дифференциальное уравнение имеет одну независимую переменную, то оно называется обыкновенным дифференциальным уравнением , если же независимых переменных две или более, то такое дифференциальное уравнение называется дифференциальным уравнением в частных производных.

Определение. Наивысший порядок производных, входящих в уравнение, называется порядком дифференциального уравнения .

Пример.

- обыкновенное дифференциальное уравнение 1 – го порядка. В общем виде записывается
.

- обыкновенное дифференциальное уравнение 2 – го порядка. В общем виде записывается

- дифференциальное уравнение в частных производных первого порядка.

Определение. Общим решением дифференциального уравнения называется такая дифференцируемая функция y = (x, C), которая при подстановке в исходное уравнение вместо неизвестной функции обращает уравнение в тождество

Свойства общего решения.

1) Т.к. постоянная С – произвольная величина, то вообще говоря дифференциальное уравнение имеет бесконечное множество решений.

2) При каких- либо начальных условиях х = х 0 , у(х 0) = у 0 существует такое значение С = С 0 , при котором решением дифференциального уравнения является функция у = (х, С 0).

Определение. Решение вида у = (х, С 0) называется частным решением дифференциального уравнения.

Определение. Задачей Коши (Огюстен Луи Коши (1789-1857)- французский математик) называется нахождение любого частного решения дифференциального уравнения вида у = (х, С 0), удовлетворяющего начальным условиям у(х 0) = у 0 .

Теорема Коши. (теорема о существовании и единственности решения дифференциального уравнения 1- го порядка)

Если функция f (x , y ) непрерывна в некоторой области D в плоскости XOY и имеет в этой области непрерывную частную производную
, то какова бы не была точка (х
0 , у 0 ) в области D , существует единственное решение
уравнения
, определенное в некотором интервале, содержащем точку х
0 , принимающее при х = х 0 значение 0 ) = у 0 , т.е. существует единственное решение дифференциального уравнения.

Определение. Интегралом дифференциального уравнения называется любое уравнение, не содержащее производных, для которого данное дифференциальное уравнение является следствием.

Пример. Найти общее решение дифференциального уравнения
.

Общее решение дифференциального уравнения ищется с помощью интегрирования левой и правой частей уравнения, которое предварительно преобразовано следующим образом:

Теперь интегрируем:

- это общее решение исходного дифференциального уравнения.

Допустим, заданы некоторые начальные условия: x 0 = 1; y 0 = 2, тогда имеем

При подстановке полученного значения постоянной в общее решение получаем частное решение при заданных начальных условиях (решение задачи Коши).

Определение. Интегральной кривой называется график y = (x) решения дифференциального уравнения на плоскости ХОY.

Определение. Особым решением дифференциального уравнения называется такое решение, во всех точках которого условие единственности Коши (см. Теорема Коши. ) не выполняется, т.е. в окрестности некоторой точки (х, у) существует не менее двух интегральных кривых.

Особые решения не зависят от постоянной С.

Особые решения нельзя получить из общего решения ни при каких значениях постоянной С. Если построить семейство интегральных кривых дифференциального уравнения, то особое решение будет изображаться линией, которая в каждой своей точке касается по крайней мере одной интегральной кривой.

Отметим, что не каждое дифференциальное уравнение имеет особые решения.

Пример. Найти общее решение дифференциального уравнения:
Найти особое решение, если оно существует.

Данное дифференциальное уравнение имеет также особое решение у = 0. Это решение невозможно получить из общего, однако при подстановке в исходное уравнение получаем тождество. Мнение, что решение y = 0 можно получить из общего решения при С 1 = 0 ошибочно, ведь C 1 = e C 0.

Или уже решены относительно производной , или их можно решить относительно производной .

Общее решение дифференциальных уравнений типа на интервале X , который задан, можно найти, взяв интеграл обоих частей этого равенства.

Получим .

Если посмотреть на свойства неопределенного интеграла, то найдем искомое общее решение:

y = F(x) + C ,

где F(x) - одна из первообразных функции f(x) на промежутке X , а С - произвольная постоянная.

Обратите внимание, что в большинстве задач интервал X не указывают. Это значит, что решение нужно находить для всех x , при которых и искомая функция y , и исходное уравнение имеют смысл.

Если нужно вычислить частное решение дифференциального уравнения , которое удовлетворяет начальному условию y(x 0) = y 0 , то после вычисления общего интеграла y = F(x) + C , еще необходимо определить значение постоянной C = C 0 , используя начальное условие. Т.е., константу C = C 0 определяют из уравнения F(x 0) + C = y 0 , и искомое частное решение дифференциального уравнения примет вид:

y = F(x) + C 0 .

Рассмотрим пример:

Найдем общее решение дифференциального уравнения , проверим правильность результата. Найдем частное решение этого уравнения, которое удовлетворяло бы начальному условию .

Решение:

После того, как мы проинтегрировали заданное дифференциальное уравнение, получаем:

.

Возьмем этот интеграл методом интегрирования по частям:


Т.о., является общим решением дифференциального уравнения.

Чтобы убедиться в правильности результата, сделаем проверку. Для этого подставляем решение, которое мы нашли, в заданное уравнение:


.

То есть, при исходное уравнение превращается в тождество:

поэтому общее решение дифференциального уравнения определили верно.

Решение, которое мы нашли, является общим решением дифференциального уравнения для каждого действительного значения аргумента x .

Осталось вычислить частное решение ОДУ, которое удовлетворяло бы начальному условию . Другими словами, необходимо вычислить значение константы С , при котором будет верно равенство:

.

.

Тогда, подставляя С = 2 в общее решение ОДУ, получаем частное решение дифференциального уравнения, которое удовлетворяет первоначальному условию:

.

Обыкновенное дифференциальное уравнение можно решить относительно производной, разделив 2 части равенства на f(x) . Это преобразование будет равнозначным, если f(x) не превращается в нуль ни при каких x из интервала интегрирования дифференциального уравнения X .

Вероятны ситуации, когда при некоторых значениях аргумента x X функции f(x) и g(x) одновременно превращаются в нуль. Для подобных значений x общим решением дифференциального уравнения будет всякая функция y , которая определена в них, т.к. .

Если для некоторых значений аргумента x X выполняется условие , значит, в этом случае у ОДУ решений нет.

Для всех других x из интервала X общее решение дифференциального уравнения определяется из преобразованного уравнения .

Разберем на примерах:

Пример 1.

Найдем общее решение ОДУ: .

Решение.

Из свойств основных элементарных функций ясно, что функция натурального логарифма определена для неотрицательных значений аргумента, поэтому областью определения выражения ln(x+3) есть интервал x > -3 . Значит, заданное дифференциальное уравнение имеет смысл для x > -3 . При этих значениях аргумента выражение x + 3 не обращается в нуль, поэтому можно решить ОДУ относительно производной, разделив 2 части на х + 3 .

Получаем .

Далее проинтегрируем полученное дифференциальное уравнение, решенное относительно производной: . Для взятия этого интеграла пользуемся методом подведения под знак дифференциала.



Понравилась статья? Поделитесь ей
Наверх